Radiolabeling of Natural Adenosine Triphosphatase Inhibitor with Phenyl (¹⁴C)Isothiocyanate and Study of Its Interaction with Mitochondrial Adenosine Triphosphatase. Localization of Inhibitor Binding Sites and Stoichiometry of Binding[†]

Gérard Klein, Michel Satre, Anne-Christine Dianoux, and Pierre V. Vignais*

ABSTRACT: The natural ATPase inhibitor (IF₁) from beef heart mitochondria was labeled with phenyl (14 C)isothiocyanate [(14 C)PITC]. Chemical labeling by (14 C)PITC does not modify the inhibitory properties of IF₁, provided the number of residues of (14 C)PITC bound per molecule of IF₁ is lower than five to six, which corresponds to the average labeling of roughly half of the available lysine residues in IF₁. This partially labeled, fully active, IF₁ was used to determine the binding stoichiometry of IF₁ with respect to F₁ and to localize the inhibitor binding sites in F₁-ATPase. The pattern of loss of ATPase activity of F₁ with increasing amounts of (14 C)PITC-IF₁ indicated that the ATPase activity is fully inhibited when 1 mol of IF₁ is bound to 1 mol of F₁. As F₁

contains at least 2β subunits, this points to a half-site reactivity of F_1 with respect to IF_1 . Sites of interaction between (^{14}C)PITC- IF_1 and F_1 subunits were investigated by the use of two cross-linking reagents which act as "zero length" cross-linkers, 1-ethyl-3-[(dimethylamino)propyl]carbodiimide (EDAC) and N-(ethoxycarbonyl)-2-ethoxydihydroquinoline (EEDQ); the products of cross-linking were analyzed by NaDodSO₄-polyacrylamide gel electrophoresis. IF_1 was found to bind preferentially to the β subunit of F_1 . Among the cross-linked products formed by reaction of EDAC or EEDQ with subunits of F_1 , one of them, the $\beta\gamma$ dimer, did not accumulate when IF_1 was added to F_1 prior to cross-linking.

he natural ATPase inhibitor (IF₁), discovered by Pullman & Monroy (1963) in preparations of beef heart mitochondrial ATPase, was later found in a number of H⁺-linked ATPases, namely, yeast mitochondrial ATPase (Satre et al., 1975; Landry & Goffeau, 1975; Ebner & Maier, 1977), liver mitochondrial ATPase (Chan & Barbour, 1976; Cintron & Pedersen, 1979), chloroplast ATPase (Nelson et al., 1972), and bacterial ATPase (Nieuwenhuis & Bakkenist, 1977; Smith & Sternweis, 1977). It has been shown that IF₁ plays a regulatory function in oxidative phosphorylation by controlling both the reverse flow of energy from ATP to ATP-driven reactions (Asami et al., 1970; Ernster et al., 1973; Van de Stadt et al., 1973; Van de Stadt & Van Dam, 1974) and the rate of ATP synthesis (Harris et al., 1979). These data on the regulatory activity of IF, were drawn from experiments where interaction of IF₁ with F₁ was measured in terms of inhibition of ATPase activity. The first direct binding data obtained with a biosynthetically labeled IF₁ (Satre et al., 1975; Klein et al., 1977) were directed to the study of the binding affinity and capacity of submitochondrial particles with respect to IF₁. However, the specific radioactivity of the biosynthetically labeled IF₁ was too low to allow the accurate determination of the stoichiometry of binding of IF₁ to F₁ and to localize the inhibitor binding site(s) in F₁. These binding parameters were investigated in the present work with a chemically radiolabeled IF₁ with high specific radioactivity.

Materials and Methods

Materials. (14C)PITC (10.2 mCi/mmol) and (3H)NEM (161 mCi/mmol) were obtained from Amersham. Stock solutions of (14C)PITC (98 mM) in Me₂SO were stored at -20

°C. (14C)DCCD (52.4 mCi/mmol) was obtained from the Commissariat à l'Energie Atomique (Saclay, France). 1-Ethyl-3-[(dimethylamino)propyl]carbodiimide (EDAC) was purchased from Merck, N-(ethoxycarbonyl)-2-ethoxydihydroquinoline (EEDQ) from Aldrich, and dimethylsuberimidate (DMS) from Pierce.

Biological Preparations. Beef heart mitochondria were prepared as described by Smith (1967). Beef heart submitochondrial particles, depleted of their endogenous inhibitor protein (AS particles), were prepared by the procedure of Racker & Horstman (1967). Coupling factor F₁ was prepared by the method of Knowles & Penefsky (1972). The specific activity of purified F₁ was 70-80 µmol of ATP hydrolyzed per min per mg when assayed as described by Knowles & Penefsky (1972). F₁ was stored as a 2 M (NH₄)₂SO₄ precipitate in 0.25 M sucrose, 50 mM Tris-HCl, pH 8.0, 2 mM EDTA, and 4 mM ATP. Before use, F₁ preparations were desalted by passage through a Sephadex G-50 (fine) column equilibrated with the required medium as described by Penefsky (1977). A molecular weight of 360 000 for F₁ was used for calculations (Senior, 1979). IF₁ was purified by the method of Horstman & Racker (1970), as modified by Kagawa (1974) for the ethanol fractionation step. A molecular weight of 10 000 for IF₁ was used for molar ratio calculations (Senior, 1979). Protein concentrations were determined by the method of Bradford (1976) using Coomassie Blue G250 for F₁ and IF₁

[†]From the Laboratoire de Biochimie (CNRS/ERA no. 36 et IN-SERM U.191), Département de Recherche Fondamentale, Centre d'Etudes Nucléaires, 38041 Grenoble Cedex, France, and the Faculté de Mêdecine de Grenoble, Grenoble, France. Received January 15, 1980. This investigation was supported by research grants from the "Fondation pour la Recherche Médicale" and the "Délégation Générale à la Recherche Scientifique et Technique".

¹ Abbreviations used: AS particles, submitochondrial particles prepared from beef heart mitochondria by sonication in the presence of ammonium hydroxide at pH 9.0 followed by a Sephadex G-50 treatment; DCCD, dicyclohexylcarbodiimide; DMS, dimethylsuberimidate; Me₂SO, dimethyl sulfoxide; EDAC, 1-ethyl-3-[(dimethylamino)propyl]carbodiimide; EDTA, ethylenediaminetetraacetic acid; EEDQ, N-(ethoxycarbonyl)-2-ethoxydihydroquinoline; F₁, beef heart mitochondrial coupling factor; IF₁, beef heart ATPase protein inhibitor; Mops, 3-(N-morpholino)propanesulfonic acid; NaDodSO₄, sodium dodecyl sulfate; NEM, N-ethylmaleimide; P₁, inorganic phosphate; PITC, phenyl isothiocyanate; TPCK−trypsin, L-1-(tosylamido)-2-phenylethyl chloromethyl ketone treated trypsin; Cl₃AcOH, trichloroacetic acid.

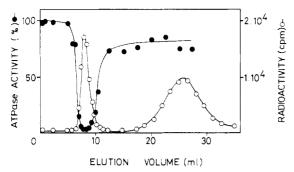


FIGURE 1: Purification of (14 C)PITC–IF₁. Beef heart IF₁ was labeled with (14 C)PITC as described under Materials and Methods. After dialysis, the (14 C)PITC–IF₁ preparation was loaded on a Sephadex G-25 (medium) column (1.2×20 cm) equilibrated with 10 mM Tris-SO₄ and 40 mM KCl, pH 7.4, and eluted with the same buffer. 1-mL fractions were collected for measurement of radioactivity (\bullet).

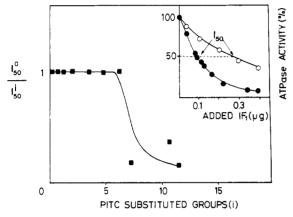


FIGURE 2: Effect of binding of PITC residues on IF₁ inhibitory activity. Beef heart IF₁ was incubated with (14 C)PITC under the conditions described under Materials and Methods except for time and pH. For higher incorporation of PITC, the pH of the buffer was increased to 9.0 and the incubation periods were increased to 3 h. The insert illustrates the determination of the half-inhibitory activity of unmodified IF₁ (\bullet) and IF₁ modified with an average of 10 PITC residues bound per mol of IF₁ (\circ). The I_{50} values obtained for samples of IF₁ labeled with increasing concentrations of (14 C)PITC (i) were utilized to calculate the $I_{50}{}^{0}/I_{50}{}^{i}$ ratio plotted on the ordinate.

and by the biuret method of Gornall et al. (1949) for AS particles. Bovine serum albumin was used as a standard. Assay of Inhibitor Activity. The inhibitor activity of IF₁ on ATPase was measured as described by Horstman & Racker (1970) with slight modifications (Figures 1 and 2); IF₁ was preincubated for 15 min at 30 °C with AS particles (0.025 mg of protein) in 0.25 M sucrose, 10 mM Mops, 0.5 mM ATP, and 0.5 mM MgSO₄, pH 6.5, in a final volume of 0.25 mL; the remaining ATPase activity was assayed at pH 8 as previously described (Satre et al., 1975).

Gel Electrophoresis. Electrophoresis in 7.5% polyacrylamide gels containing 0.1% NaDodSO₄ was carried out as described by Weber & Osborn (1969). After completion of electrophoresis, the gels were stained for 4–6 h with a solution of 0.05% Coomassie Blue R250, 25% isopropyl alcohol, and 10% acetic acid and destained according to Fairbanks et al. (1971). The densitometric traces were recorded with a Joyce-Loebl densitometer. The gels (previously fixed, stained, and destained) were frozen in solid CO₂ and cut into 1-mm slices with a Joyce-Loebl gel slicer to determine the distribution of radioactivity in the gels. The slices were digested by overnight incubation in 1 mL of 10% H₂O₂ at 50–60 °C and counted in 10 mL of a scintillation fluid (Patterson & Greene, 1965).

Labeling of IF₁ with (14C)PITC. Beef heart IF₁ was labeled with (14C)PITC by using a procedure similar to that described by Levy & Dawson (1976) for labeling immunoglobulin. (14C)PITC (100 μCi, 10 mM final concentration) in Me₂SO was added to 1 mg of IF₁ in 100 mM triethanolamine buffer, pH 8.0. The final volume was 1 mL, and the final Me₂SO concentration was 10% (v/v). The mixture was incubated for 2 h under continuous stirring at room temperature. The reaction was stopped by addition of an excess of NH₂ groups (0.1 mL of 2 M Tris-HCl, pH 9.0). Excess reagent was eliminated by dialysis against 1 L of 40 mM sodium acetate and 10 mM Tris-SO₄, pH 7.4, for 3 h with two changes followed by chromatography on a Sephadex G-25 (medium) column (1.2 \times 20 cm) equilibrated with the same buffer. Fractions were collected and measured for protein, radioactivity, and ATPase inhibitor activity (Figure 1). The (14C)-PITC-IF, was eluted in the void volume, well separated from unbound (14C)PITC. Fractions containing ATPase inhibitor activity were concentrated by precipitation with 10% Cl₃AcOH (w/v) (Horstman & Racker, 1970). Following the above procedure, an average of 1 mol of (14C)PITC was incorporated per mol of IF₁, resulting in a specific radioactivity of 23×10^9 dpm/mmol. This partially labeled IF, was used in most of the experiments described below. It should be noted that much more (14C)PITC can be incorporated into IF, by making the pH more alkaline.

Tryptic Peptide Mapping. (14 C)PITC-IF₁ (40 µg of protein, 0.84 mol of (14 C)PITC per mol of IF₁) was suspended in 30 mM ammonium bicarbonate, pH 7.9, and incubated at 37 °C for 3 h with TPCK-trypsin in a final volume of 0.08 mL, using a trypsin/IF₁ ratio of 1:100, and for another period of 3 h after a new addition of TPCK-trypsin to bring the trypsin/IF₁ ratio to 1:50. The reaction was stopped by 0.02 mL of 1 N acetic acid, and the digest was lyophilized. The lyophilized digest was redissolved in 5 μ L of electrophoresis buffer (see below), spotted on a 10 × 10 cm cellulose thin-layer plate (F1440, Schleicher and Schüll), and submitted to electrophoresis at 200 V for 1 h at 4 °C in pyridine-acetic acidacetone-H₂O (20:40:160:800 v/v), pH 4.4. Ascending chromatography in butanol-pyridine-acetic acid-H₂O (30:20:6:24 v/v) was performed in the second dimension for 2 h.

Binding of (^{14}C)PITC-IF₁ to F₁. F₁ (200 µg) was incubated with increasing amounts of (14C)PITC-IF₁ (up to 35 μg) in 300 µL of 25 mM Mops, 0.5 mM DTT, 1 mM MgSO₄, and 1 mM ATP at pH 6.5 for 20 min. An aliquot fraction was assayed for ATPase activity, and in the remaining sample the IF₁-F₁ complex was separated from free IF₁ either by gel filtration or by precipitation with 50% saturated (NH₄)₂SO₄ (Pullman & Monroy, 1963). For gel filtration, a Sephadex G-200 (medium) column (1 \times 20 cm) equilibrated with the above buffer was used. The radioactivity and the protein content of the material eluted in the excluded volume were measured. Free (14C)PITC-IF₁ was also separated from (14C)PITC-IF₁ bound to F₁ by a method similar to the centrifugation-filtration described by Penefsky (1977). A 1-mL disposable plastic syringe was filled with Sepharose 6B equilibrated in 0.25 M sucrose, 10 mM NaCl, 10 mM Mops, and 1 mM MgATP, pH 6.5. The column was placed into a centrifuge tube and centrifuged for 2 min in a swinging bucket IEC clinical centrifuge at low speed to pack the Sepharose. Then a 100- μ L sample of the mixture of (¹⁴C)PITC-IF₁ and F₁ was loaded on the Sepharose column which was centrifuged again for 2 min. Finally, 100 µL of the above medium was placed on the column and the centrifugation was repeated. The pooled eluates of the two latter centrifugations were assayed

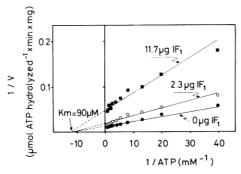


FIGURE 3: Double-reciprocal plots of ATP hydrolysis by native F_1 and F_1 inhibited by (14 C)PITC– 1 F₁. F_1 (56 μ g) was preincubated for 20 min at room temperature without or with 2.3 and 11.7 μ g of IF₁ in 0.25 M sucrose, 10 mM Mops, and 500 μ M MgATP, pH 6.5, at a final volume of 1 mL. The ATPase activities of control enzyme (\bullet) and inhibited enzyme (\circ , 2.3 μ g of IF₁; \bullet , 11.7 μ g of IF₁) were measured spectrophotometrically at 25 $^{\circ}$ C in a final volume of 2 mL containing 20 mM Tris–SO₄, pH 8.5, 0.2 mM NADH, 2 mM MgCl₂, 4 mM phosphoenolpyruvate, 150 μ g of pyruvate kinase, 50 μ g of lactate dehydrogenase, 2 mM KCl, 10 mM sodium bicarbonate, and increasing concentrations of ATP. The velocity is given in micromoles of P_1 released per minute per milligram of protein.

for ATPase activity, protein content, and radioactivity.

In the ammonium sulfate precipitation method, an equal volume of saturated ammonium sulfate was added to the solution of (14C)PITC-IF₁ and F₁. After a 15-min incubation at room temperature, the precipitated protein was collected by centrifugation at maximal speed for 4 min in an Eppendorf centrifuge. The supernatant was discarded. The pellet was rinsed with 1 mL of 2 M ammonium sulfate, 0.5 mM ATP, 1 mM MgCl₂, 250 mM sucrose, and 10 mM Mops, pH 6.5, and then solubilized in the same medium devoid of ammonium sulfate. The protein content, the ATPase activity, and the radioactivity were measured on an aliquot sample. In control experiments, it was determined that IF₁ alone was not precipitated under these conditions.

Results

Purification and Biological Activity of (14C)PITC-IF₁. (14C)PITC was chosen to label IF₁ because of the relative abundance of lysine residues in beef heart IF₁ [11 lysine residues/mol of IF₁ as calculated from the data of Brooks & Senior (1971) and from personal data]. Another reason for the use of (14C)PITC is that partial labeling by this reagent does not alter the biological activity of IF₁ (see below).

When incubation of beef heart IF₁ with (¹⁴C)PITC was conducted under the conditions described under Materials and Methods, IF₁ was covalently labeled with an average of 1 mol of bound (14C)PITC per mol of IF1. A single radioactive band stained with Coomassie Blue was observed when (14C)PITC-IF₁ was analyzed by NaDodSO₄-polyacrylamide gel electrophoresis. As PITC reacts with amino groups in their unprotonated form, the extent of labeling can be controlled by pH. In fact, the number of moles of (14C)PITC bound per mole of IF₁ could be substantially increased by raising the pH of the reaction mixture to 9. As illustrated in Figure 2, incorporation of less than 6 mol of (14C)PITC per mol of IF1 did not alter the inhibitory efficiency of IF₁ on the ATPase activity of F₁. Raising the number of bound PITC molecules above six resulted in a abrupt decrease of the inhibitory efficiency of IF₁.

All the experiments that follow were performed with IF₁ preparations labeled with an average of 1 mol of (¹⁴C)PITC per mol of IF₁. The inhibition caused by (¹⁴C)PITC-IF₁ labeled in this manner was apparently noncompetitive, similar

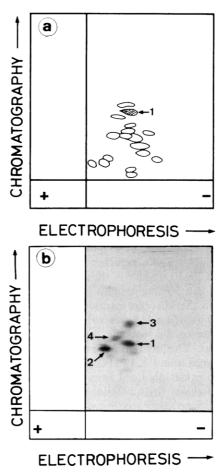


FIGURE 4: Tryptic peptide mapping of (14 C)PITC-IF₁. Digestion by trypsin and separation of peptides by electrophoresis followed by chromatography were as described under Materials and Methods. Peptides were visualized by ninhydrin staining and by autoradiography. A representative drawing of the ninhydrin-stained spots (a) and a photograph of the autoradiogram (b) are presented. The crosshatched circle (peptide 1) corresponds to the only radioactive ninhydrin-positive spot.

to that found for native IF₁ (Van de Stadt et al., 1973; Ernster et al., 1973), at least for a range of ATP concentrations up to 300 μ M (Figure 3). However, at concentrations of ATP higher than 300 μ M, plots of 1/v against 1/[ATP] departed from linearity probably due to tight binding of IF₁ at high concentrations of ATP and to variation in free IF₁ (Henderson, 1972). In other words, because of the high affinity of IF₁ for F₁, depending on ATP concentration, the analysis of ATPase inhibition by IF₁, based on Lineweaver–Burk plots, must be taken with caution.

Peptide Maps. A tryptic map of (14C)PITC-IF₁ modified with an average of 1 PITC residue/IF₁ is presented in Figure 4. Seventeen spots were identified by ninhydrin staining (plate a). Although this number might be a slight underestimate, due to overlapping of some peptides, it agrees fairly well with the theoretical number of 17 to 18 lysine plus arginine residues found in native IF₁ (Brooks & Senior, 1971). Ninhydrin staining of the tryptic map of (14C)PITC-IF₁ and unmodified IF₁ revealed the same spots with only one exception, corresponding to a supplementary radioactive spot in the case of (14C)PITC-IF₁ (shadowed area, peptide 1). Tryptic digestion at different trypsin concentrations (enzyme/substrate = 1:100 or 1:50) and different periods of incubation (6-24 h) resulted in the same peptide map; furthermore, there was no material left at the origin. These data indicated that tryptic digestion of IF₁ was complete.

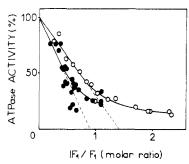


FIGURE 5: Binding of (14 C)PITC-IF₁ to F₁. Free and bound (14 C)PITC-IF₁ were separated by Sephadex gel filtration (\bullet) or by ammonium sulfate precipitation (O) as described under Materials and Methods. Residual ATPase activity is plotted as a function of the number of moles of (14 C)PITC-IF₁ bound per mole of F₁.

Autoradiography (plate b of Figure 4) revealed four highly labeled peptides. These peptides, marked 1, 2, 3, and 4, contained 13, 20, 10, and 6% of the total bound radioactivity, respectively; the 50% remaining bound radioactivity was distributed in the 10 other peptides. Among the labeled peptides, only one (peptide 1) reacted with ninhydrin, probably due to the presence of a N-terminal amino acid highly sensitive to this reagent. The fact that none of the radioactive tryptic peptides obtained from (14C) PITC-IF₁ (plate b) coincide with the tryptic peptides obtained from unmodified IF, can be explained as follows. (a) Any lysine residue which is modified by (14C)PITC is no longer recognized by trypsin, and therefore trypsin digestion is more restricted with the labeled protein. (b) The new labeled peptides obtained from (14C)PITC-IF₁ being larger than those arising from unmodified IF, migrate more slowly in electrophoresis. Being more hydrophobic due to derivatization by PITC, they migrate faster in chromatography. No free (14C)PITC (characterized by a zero mobility in electrophoresis and a R_f of 1 in chromatography) was

The finding that the tryptic digest of (14C)PITC-IF₁ contained the same unlabeled peptides as those found in the digest of native unlabeled IF₁ plus new additional radioactive peptides suggests that, during reaction with (14C)PITC, only part of the IF₁ molecules are labeled. This is consistent with the statistical distribution of radioactive IF₁ molecules calculated according to Poisson's law. Taking the case of IF₁ labeled with an average of 1 (14C)PITC residue/IF₁ molecule, it can be calculated that 40% of the IF₁ molecules are unlabeled and therefore behave as native IF1 in the tryptic map. The remaining IF₁ molecules (60%) are labeled with 1 or more than 1 (14C)PITC residue per IF₁ molecule. The labeled IF₁ yielded upon trypsin digestion four highly labeled peptides (peptides 1-4) containing half of the bound radioactivity (therefore corresponding to 30% of total IF₁) and also unlabeled peptides, identical with those arising from unmodified IF₁. Therefore, each of the four major radioactive peptides should decrease the amount of unmodified peptides stained by ninhydrin by less than 10%, which explains why the tryptic peptides obtained from (14C)PITC-IF₁ and from unmodified IF₁ are stained with virtually the same intensity.

Stoichiometry of (14 C)PITC-IF₁ Binding to Isolated F₁. After incubation of (14 C)PITC-IF₁ with F₁, bound (14 C)PITC-IF₁ was separated from free (14 C)PITC-IF₁ either by gel filtration or by ammonium sulfate precipitation (see Materials and Methods). A linear correlation between the binding of (14 C)PITC-IF₁ and the decrease of ATPase activity was obtained until 70% inhibition was attained (Figure 5). By extrapolation, one could calculate the binding stoichiometry of (14 C)PITC-IF₁ required for complete inhibition of ATPase

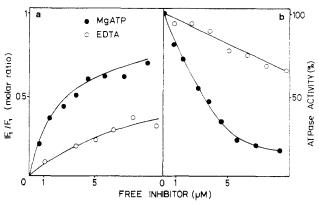


FIGURE 6: Binding of (14 C)PITC-IF₁ to F₁. Effect of EDTA and Mg ions. (14 C)PITC-IF₁ at increasing concentrations was incubated with F₁ as described under Materials and Methods in a standard incubation medium with MgATP (\bullet) or in a medium where MgATP was replaced by 2 mM EDTA (O). At the end of the incubation, the residual ATPase activity was measured with a portion of the reaction mixture (b) and the remaining sample was filtrated on Sephadex to recover the complex made of (14 C)PITC-IF₁ bound to F₁ (a).

activity. These stoichiometries differed, depending on whether binding was measured by gel filtration or by ammonium sulfate precipitation. They were as follows: 0.71 and 0.87 (two experiments, filtration on Sepharose 6B); 0.90 \pm 0.04 (three experiments, filtration on Sephadex G-50); 0.90 \pm 0.10 (three experiments, filtration on Sephadex G-200); 1.64 \pm 0.13 (six experiments, ammonium sulfate precipitation). The higher value found by the ammonium sulfate precipitation technique could be due to the stabilization of low-affinity IF₁-F₁ complexes, or to a nonspecific coprecipitation of IF₁ with F₁ by ammonium sulfate, or also to the binding of an unstable oligomer form of IF₁ to F₁. This last hypothesis is supported by experimental data showing aggregation of IF₁ molecules after incubation with cross-linking reagents (see below).

MgATP promotes the inhibition of ATPase activity in AS particles by added IF₁ (Horstman & Racker, 1970) and the binding of IF₁ to AS particles (Klein et al., 1977). In agreement with these data, (14 C)PITC-IF₁ was found to bind to isolated F₁ with a much higher affinity in the presence of MgATP than in the presence of EDTA; the higher binding affinity correlated to a higher efficiency of inhibition (Figure 6).

Cross-Linking of (^{14}C)PITC-IF₁ to F₁ Subunits. Purified F₁ from beef heart mitochondria contains five different subunits, α , β , γ , δ , and ϵ with molecular weights of 53 000, 50 000, 33 000, 17 500, and 7500, respectively (Senior, 1979). Previous work based on the cross-linking of F₁ subunits by the bifunctional reagent DMS along with specific labeling of the subunits had shown that the α subunits are close to each other and that the α subunit is also close to the β subunit (Satre et al., 1976; Baird & Hammes, 1977).

The cross-linking reagents used in the present work to identify which F_1 subunit binds to IF_1 were EDAC, EEDQ, and DMS. EDAC (Timkovich, 1977) and EEDQ (Belleau & Malek, 1968), two carboxyl group activating reagents, act as "zero length" cross-linkers, giving rise to amide bonds between adjacent carboxyl and amino residues at the subunit interface, whereas DMS reacts with free amino groups to form a bridge of ~ 12 Å.

Control assays with F_1 showed that both EDAC and EEDQ were able to generate cross-linked products (Figure 7), indicating a compact structure for F_1 with close contact between the cross-linked subunits. From the apparent molecular weights of the cross-linked products obtained with NaDodSO₄

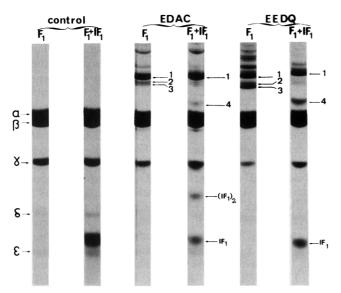


FIGURE 7: Cross-linking of F_1 and F_1 – IF_1 complex with EDAC and EEDQ. F_1 (200 μ g) was incubated for 15 min at 30 °C with 30 μ g of (1⁴C)PITC– IF_1 in 0.25 M sucrose, 10 mM Mops, and 1 mM MgATP, pH 6.5, in a final volume of 0.2 mL. A control sample was incubated without IF_1 . At this stage, ATPase activity was inhibited to \sim 80% by IF_1 . Concentrated methanolic solutions of EDAC or EEDQ were added to give final concentration was less than 1%. After 20 min, cross-linking was stopped by addition of 1% (w/v) NaDodSO₄. After further additions of 1% (v/v) 2-mercaptoethanol, 20% (v/v) glycerol, and 0.01% (w/v) bromophenol blue (tracking dye), the samples were analyzed by polyacrylamide gel electrophoresis as described under Materials and Methods.

gel electrophoresis, band 1 ($M_{\rm r}$ 102000 \pm 3000) could be tentatively identified as a dimer of the largest subunits (either $\alpha\alpha$, $\alpha\beta$, or $\beta\beta$) and bands 2 ($M_{\rm r}$ 90000 \pm 3000) and 3 ($M_{\rm r}$ 87000 \pm 3000) as $\alpha\gamma$ and $\beta\gamma$ dimers, respectively (Figure 7).

The cross-linking pattern of the IF_1 - F_1 complex with EDAC and EEDQ compared to that of F_1 alone revealed an extra band (band 4, M_r 65 000-67 000) and the disappearance of bands 2 and 3. On the basis of the molecular weight, band 4 could be tentatively identified as α - IF_1 , or as β - IF_1 , or possibly as a mixture of the two dimers. A faint band with the same mobility as band 4 was observed after cross-linking with DMS, but it was less marked than the band obtained with EDAC and EEDQ, indicating that EDAC and EEDQ cross-link IF_1 and F_1 more efficiently than DMS does.

In the experiment presented in Figure 8, (14 C)PITC–IF $_1$ was cross-linked with F $_1$ in the presence of EEDQ. After Na-DodSO $_4$ -polyacrylamide gel electrophoresis, the gel was cut into slices for the determination of radioactivity. The radioactivity profile shows that (14 C)PITC–IF $_1$ is indeed associated with the new band 4 (Figure 8). Furthermore, oligomeric forms of (14 C)PITC–IF $_1$ (presumably di-, tri-, and tetramers) also accumulated, corresponding to peaks II, III, and IV, respectively. These same oligomeric forms were found when unlabeled IF $_1$ alone was cross-linked by EEDQ. It is noteworthy that the cross-linked products obtained by cross-linking F $_1$ with either unmodified IF $_1$ or (14 C)PITC–IF $_1$ were similar. Therefore, labeling IF $_1$ by PITC does not significantly disturb the F $_1$ -IF $_1$ interaction and the topology of the F $_1$ -IF $_1$ complex.

A better insight into the identity of band 4 was provided by specific chemical labeling of subunits α and β of F_1 . The α , γ , and ϵ subunits of beef heart F_1 possess SH groups in contrast to subunit β (Senior, 1975) and to IF₁ (Brooks & Senior, 1971); subunit α and also subunits γ and ϵ can thus be labeled with (³H)NEM. On the other hand, subunit β in isolated F_1 can be specifically labeled with (¹⁴C)DCCD

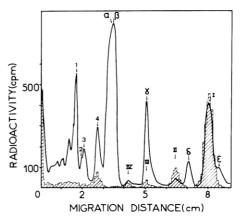


FIGURE 8: Radioactivity profile of the cross-linked (14 C)PITC-IF₁-F₁ complex. The complex made of (14 C)PITC-IF₁ and F₁ was cross-linked with 1 mM EEDQ and analyzed by NaDodSO₄-polyacrylamide gel electrophoresis as described in the legend to Figure 7. The 14 C radioactivity profile corresponds to the shadowed area and the densitometric trace at 600 nm to the plain line. Peaks II, III, and IV are presumably di-, tri-, and tetramers of (14 C)PITC-IF₁, respectively.

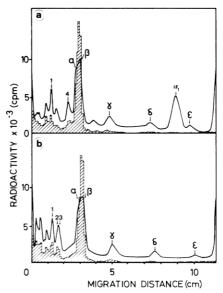


FIGURE 9: (14 C)DCCD labeling of cross-linked F_1 and F_1 -I F_1 complex. (a) The F_1 -I F_1 complex was cross-linked with 1 mM EEDQ as described in Figure 7, except that unlabeled IF₁ was used instead of (14 C)PITC-IF₁. (14 C)DCCD (100 μ M) was then added and allowed to react for 0.5 h at 30 °C, which resulted in the binding of \sim 1.2 mol of (14 C)DCCD per mol of F_1 or F_1 -IF₁. Free (14 C)DCCD was eliminated by filtration on a Sephadex G-50 column (Penefsky, 1977), and the samples were analyzed by NaDodSO₄-polyacrylamide gel electrophoresis. The 14 C radioactivity profile (crosshatched area) is shown together with the densitometric trace at 600 nm. (b) Control cross-linking assay carried out with F_1 alone (without IF₁).

(Pougeois et al., 1979). As illustrated in Figures 9 and 10, band 4 was clearly labeled with (14 C)DCCD but not with (3 H)NEM. On the basis of the molecular weight corresponding to band 4 (65 000–67 000) and its specific labeling by (14 C)DCCD, the cross-linked product in band 4 can be identified as a β -IF₁ dimer. If any α -IF₁ dimer was formed, the amount was below the limit of detection. There was no evidence of a cross-linked product between IF₁ and subunit γ based on the labeling of subunit γ by (3 H)NEM.

Two of the cross-linked products of F_1 , bands 2 and 3, were identified as $\alpha\gamma$ and $\beta\gamma$ dimers on the basis of their molecular weights and also labeling by (^{14}C)DCCD for the $\beta\gamma$ dimer (Figure 9). Binding of IF_1 to F_1 resulted in quenching of band 2 and almost complete disappearance of band 3 (Figure 7); this indicates that the binding of IF_1 to subunit β of F_1 prevents

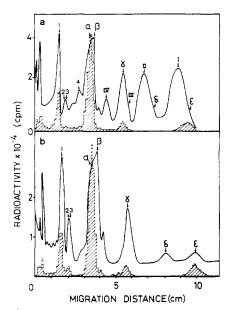


FIGURE 10: (³H)NEM labeling of cross-linked F_1 and F_1 -I F_1 complex. (a) The F_1 -I F_1 complex was cross-linked with 5 mM EDAC as described in Figure 7, except that unlabeled IF $_1$ was used instead of (¹⁴C)PITC-IF $_1$. The samples were loaded onto Sephadex G-50 (fine) columns equilibrated in 20 mM sodium phosphate, pH 7.0 (Penefsky, 1977). To the fraction corresponding to the excluded volume, 3 mM (³H)NEM and 1% (w/v) NaDodSO $_4$ were added and allowed to react for 30 min at 30 °C. The samples were analyzed by NaDodSO $_4$ -polyacrylamide gel electrophoresis. The ³H radioactivity profile (crosshatched) is shown together with the densitometric trace at 600 nm. (b) Control cross-linking assay carried out with F_1 alone (without I F_1).

cross-linking of subunit γ not only to subunit β but also to subunit α .

Discussion

This paper describes the chemical labeling of beef heart IF₁ by (14C)PITC and the use of the radiolabeled IF₁ to investigate some binding parameters of IF₁ with respect to F₁. Only partial labeling of lysine residues in IF₁ is compatible with the expression of full inhibitory activity of IF₁. Up to 6 PITC residues/molecule of IF₁ can be introduced without noticeable loss of biological activity. The binding of more PITC residues resulted in a 80-90% inactivation of IF₁. If all lysine residues had equivalent reactivity with respect to PITC, the loss of activity upon PITC binding would be strictly proportional to the number of bound PITC molecules and the dose-effect curve would be a straight line, starting from the origin. In other words, binding of 6 PITC residues/molecule of IF₁ would result in 50% inhibition; obviously this is not the case. There is in fact a sharp threshold of inactivation of IF1 corresponding to the binding of more than 6 PITC residues/mol of IF₁. Therefore, one must conclude that PITC binds preferentially to specific lysine residues. This is in agreement with the analysis of radioactivity in tryptic peptides of (14C)PITC-IF₁ obtained with a labeling ratio of 1 (14C)PITC residue/molecule of IF₁; 4 peptides out of the 14 detected by autoradiography contained 50% of the radioactivity. This again indicates the preferential reactivity of the lysine residues in these peptides to (14C)PITC, probably because of a better accessibility of the reagent or a more appropriate environment.

The binding stoichiometry of (¹⁴C)PITC-IF₁ to F₁ has been investigated with the (¹⁴C)PITC-IF₁-F₁ complex recovered either after filtration on Sephadex or by precipitation with ammonium sulfate. Ratios close to 1 were consistently obtained in eight experiments performed by gel filtration. The ammonium sulfate precipitation technique gave slightly higher

ratios, with an average of 1.6. It is probable that monomers and oligomers of IF, coexist in equilibrium, as revealed by cross-linking assays. Ammonium sulfate precipitation, but not gel filtration, may stabilize oligomeric forms of IF₁, thus resulting in the recovery of F₁-IF₁ complexes of higher stoichiometry. The 1:1 binding stoichiometry is in agreement with previously reported data on the interaction of IF₁ with F₁, based on the Easson and Stedman treatment of inhibition of mitochondrial ATPase activity by IF1 (Klein et al., 1977; Gomez-Fernandez & Harris, 1978). F₁ has an oligomeric structure corresponding to either $\alpha_2\beta_2$ or $\alpha_3\beta_3$. It therefore possesses at least two copies of the β subunit which is supposed to contain the catalytic site [for review, cf. Senior (1979)]. Yet, the binding of only 1 IF_1/F_1 is sufficient to fully inhibit the ATPase activity of F₁. This result, which is typical of half-site reactivity, corroborates other data concerning the inactivation of F₁ by 4-chloro-7-nitrobenzofurazan (Ferguson et al., 1975), by butanedione and phenylglyoxal (Marcus et al., 1976; Kohlbrenner & Cross, 1978), and by DCCD (Pougeois et al., 1979).

For localization of the binding site of IF_1 on F_1 , the patterns obtained upon cross-linking the F_1 - IF_1 complex and F_1 alone were compared. By use of the carboxyl group activating reagents EDAC and EEDQ, two efficient zero length cross-linkers, we were able to isolate a major labeled cross-linked product consisting of (^{14}C)PITC- IF_1 and the β subunit of F_1 . The β subunit in the β - IF_1 product was identified by specific labeling with (^{14}C)DCCD (Pougeois et al., 1979). (^{3}H)NEM, which labels the α , γ , and ϵ subunits but not the β subunit of F_1 (Senior, 1975), was not present in significant amounts in the cross-linked product obtained with IF_1 , indicating that the α subunit does not directly interact with IF_1 .

Cross-linked products obtained by reaction of EEDQ and EDAC with F_1 point to close interactions between subunits α and $\beta,$ α and $\gamma,$ and also β and $\gamma.$ Binding of IF_1 to F_1 prevented the formation of the cross-linked product $\beta\gamma,$ suggesting that IF_1 may interact with the β subunit at a site which is close to the γ subunit; accumulation of the $\alpha\gamma$ dimer was also decreased, though less markedly than that of $\beta\gamma.$ It is possible that the binding of PITC–IF $_1$ to the β subunit of F_1 either prevents cross-linking of the β and γ subunits in F_1 by direct competition with the cross-linking reagent or induces some conformational changes that weaken interactions between the β and γ subunits and disorganize the compact structure of the three major subunits $\alpha,$ $\beta,$ and γ in $F_1.$

References

Asami, K., Juntti, K., & Ernster, L. (1970) Biochim. Biophys. Acta 205, 307-311.

Baird, B. A., & Hammes, G. G. (1977) J. Biol. Chem. 252, 4743-4748.

Belleau, B., & Malek, G. (1968) J. Am. Chem. Soc. 90, 1651-1652.

Bradford, M. M. (1976) Anal. Biochem. 72, 248-254.

Brooks, J. C., & Senior, A. E. (1971) Arch. Biochem. Biophys. 147, 467-470.

Chan, S. H. P., & Barbour, R. L. (1976) Biochim. Biophys. Acta 430, 426-433.

Cintron, N. M., & Pedersen, P. L. (1979) J. Biol. Chem. 254, 3439-3443.

Ebner, E., & Maier, K. L. (1977) J. Biol. Chem. 252, 671-676.

Ernster, L., Juntti, K., & Asami, K. (1973) J. Bioenerg. 4, 149-159.

Fairbanks, G., Steck, T. L., & Wallach, D. F. H. (1971) Biochemistry 10, 2606-2617.

- Ferguson, S. J., Lloyd, W., Lyons, M. H., & Radda, G. K. (1975) Eur. J. Biochem. 54, 117-126.
- Gomez-Fernandez, J. C., & Harris, D. A. (1978) *Biochem.* J. 176, 967-975.
- Gornall, A. G., Bardawill, C. J., & David, M. M. (1949) J. Biol. Chem. 177, 751-766.
- Harris, D. A., Von Tscharner, V., & Radda, G. K. (1979) Biochim. Biophys. Acta 548, 72-84.
- Henderson, P. J. F. (1972) Biochem. J. 127, 321-333.
- Horstman, L. L., & Racker, E. (1970) J. Biol. Chem. 245, 1336-1344.
- Kagawa, Y. (1974) Methods Membr. Biol. 1, 240-241.
- Klein, G., Satre, M., & Vignais, P. V. (1977) FEBS Lett. 84, 129-134.
- Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623.
- Kohlbrenner, W. E., & Cross, R. L. (1978) J. Biol. Chem. 253, 7609-7611.
- Landry, Y., & Goffeau, A. (1975) Biochim. Biophys. Acta 376, 470-484.
- Levy, N. L., & Dawson, J. R. (1976) J. Immunol. 116, 1526-1531.
- Marcus, F., Schuster, S. M., & Lardy, H. A. (1976) J. Biol. Chem. 251, 1775-1780.
- Nelson, N., Nelson, H., & Racker, E. (1972) J. Biol. Chem. 247, 7657-7662.
- Nieuwenhuis, F. J. R. M., & Bakkenist, A. R. J. (1977) Biochim. Biophys. Acta 459, 596-604.

- Patterson, M. S., & Greene, R. C. (1965) Anal. Chem. 37, 854-857.
- Penefsky, H. S. (1977) J. Biol. Chem. 252, 2891-2899.
- Pougeois, R., Satre, M., & Vignais, P. V. (1979) *Biochemistry* 18, 1408-1413.
- Pullman, M. E., & Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769.
- Racker, E., & Horstman, L. L. (1967) J. Biol. Chem. 242, 2547-2551.
- Satre, M., de Jerphanion, M.-B., Huet, J., & Vignais, P. V. (1975) Biochim. Biophys. Acta 387, 241-255.
- Satre, M., Klein, G., & Vignais, P. V. (1976) Biochim. Biophys. Acta 453, 111-120.
- Senior, A. E. (1975) Biochemistry 14, 660-664.
- Senior, A. E. (1979) in *Membrane Proteins in Energy Transduction* (Capaldi, R. A., Ed.) pp 233-278, Marcel Dekker, New York and Basel.
- Smith, A. L. (1967) Methods Enzymol. 10, 81-86.
- Smith, J. B., & Sternweis, P. C. (1977) *Biochemistry 16*, 306-311.
- Timkovich, R. (1977) Biochem. Biophys. Res. Commun. 74, 1463-1468.
- Van de Stadt, R. J., & Van Dam, K. (1974) *Biochim. Biophys. Acta 347*, 240–252.
- Van de Stadt, R. J., De Boer, B. L., & Van Dam, K. (1973) Biochim. Biophys. Acta 292, 338-349.
- Weber, K., & Osborn, M. (1969) J. Biol. Chem. 244, 4406-4412.

Proton Translocation Catalyzed by the Electrogenic ATPase in the Plasma Membrane of Neurospora[†]

Gene A. Scarborough

ABSTRACT: ATP hydrolysis catalyzed by the plasma membrane ATPase (ATP phosphohydrolase, EC 3.6.1.3) located on the outer surface of functionally inverted plasma membrane vesicles isolated from the eukaryotic microorganism Neurospora crassa gives rise to the generation of an interior positive membrane potential ($\Delta\Psi$) [Scarborough, G. A. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1485-1488]. The studies presented here demonstrate that the electrogenic ion in this process is H⁺. In the presence of MgATP and the permeant anion SCN-, isolated Neurospora plasma membrane vesicles catalyze the concentrative uptake of the ΔpH probe [14C]imidazole, and this uptake is markedly inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), which demonstrates MgATP-dependent intravesicular acidification (ca. 2 pH units). MgATP-dependent [14C]imidazole uptake (ΔpH generation) and MgATP-dependent [14C]SCN⁻ uptake

 $(\Delta\Psi$ generation) exhibit identical saturation kinetics with respect to the concentration of MgATP and are inhibited in parallel by increasing concentrations of the electrogenic AT-Pase inhibitors orthovanadate and diethylstilbestrol, which indicates that $\Delta\Psi$ and Δ pH are generated by the same enzyme. The fluorescent pH indicator, fluorescein-labeled dextran, placed inside the vesicles during the isolation procedure, exhibits marked time-dependent fluorescence quenching upon the addition of MgATP and SCN-, and the fluorescence response is reversed by orthovanadate, CCCP, and nigericin plus K+, which independently demonstrates intravesicular acidification energized by the plasma membrane ATPase. The results of these experiments provide convincing evidence that the electrogenic ATPase in the plasma membrane of *Neurospora* is a proton pump.

It has been recognized for some time that the plasma membrane of the eukaryotic microorganism *Neurospora crassa* maintains a transmembrane electrical potential $(\Delta \Psi)$ of approximately 200 mV (interior negative) (Slayman, 1965). On

the basis of electrophysiological studies that correlated $\Delta\Psi$ with intracellular ATP levels, Slayman et al. (1970, 1973) proposed that $\Delta\Psi$ is generated by an electrogenic ATPase located in the plasma membrane. Upon the development of the concanavalin A method for isolating *Neurospora* plasma membranes (Scarborough, 1975), it became possible to demonstrate the existence of an ATPase in the *Neurospora* plasma membrane, and the biochemical properties of this enzyme were subsequently characterized (Scarborough, 1977; Bowman &

[†] From the Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514. Received December 19, 1979. Supported by U.S. Public Health Service NIH Grant GM24784.